Data mining as a process.

Fundamentally, data mining is about processing data and identifying patterns and trends in that information so that you can decide or judge. Data mining principles have been around for many years, but, with the advent of big data, it is even more prevalent.

Big data caused an explosion in the use of more extensive data mining techniques, partially because the size of the information is much larger and because the information tends to be more varied and extensive in its very nature and content. With large data sets, it is no longer enough to get relatively simple and straightforward statistics out of the system. With 30 or 40 million records of detailed customer information, knowing that two million of them live in one location is not enough. You want to know whether those two million are a particular age group and their average earnings so that you can target your customer needs better.

These business-driven needs changed simple data retrieval and statistics into more complex data mining. The business problem drives an examination of the data that helps to build a model to describe the information that ultimately leads to the creation of the resulting report. Figure 1 outlines the process.

Outline of the process

outline of the process

The process of data analysis, discovery, and model-building is often iterative as you target and identify the different information that you can extract. You must also understand how to relate, map, associate, and cluster it with other data to produce the result. Identifying the source data and formats, and then mapping that information to our given result can change after you discover different elements and aspects of the data.

Data mining tools

Data mining is not all about the tools or database software that you are using. You can perform data mining with comparatively modest database systems and simple tools, including creating and writing your own, or using off the shelf software packages. Complex data mining benefits from the past experience and algorithms defined with existing software and packages, with certain tools gaining a greater affinity or reputation with different techniques.

For example, IBM SPSS®, which has its roots in statistical and survey analysis, can build effective predictive models by looking at past trends and building accurate forecasts. IBM InfoSphere® Warehouse provides data sourcing, preprocessing, mining, and analysis information in a single package, which allows you to take information from the source database straight to the final report output.

It is recent that the very large data sets and the cluster and large-scale data processing are able to allow data mining to collate and report on groups and correlations of data that are more complicated. Now an entirely new range of tools and systems available, including combined data storage and processing systems.

You can mine data with a various different data sets, including, traditional SQL databases, raw text data, key/value stores, and document databases. Clustered databases, such as Hadoop, Cassandra, CouchDB, and Couchbase Server, store and provide access to data in such a way that it does not match the traditional table structure.

In particular, the more flexible storage format of the document database causes a different focus and complexity in terms of processing the information. SQL databases impost strict structures and rigidity into the schema, which makes querying them and analyzing the data straightforward from the perspective that the format and structure of the information is known.

Document databases that have a standard such as JSON enforcing structure, or files that have some machine-readable structure, are also easier to process, although they might add complexities because of the differing and variable structure. For example, with Hadoop’s entirely raw data processing it can be complex to identify and extract the content before you start to process and correlate the it.

Key techniques

Several core techniques that are used in data mining describe the type of mining and data recovery operation. Unfortunately, the different companies and solutions do not always share terms, which can add to the confusion and apparent complexity.

Let’s look at some key techniques and examples of how to use different tools to build the data mining.


Association (or relation) is probably the better known and most familiar and straightforward data mining technique. Here, you make a simple correlation between two or more items, often of the same type to identify patterns. For example, when tracking people’s buying habits, you might identify that a customer always buys cream when they buy strawberries, and therefore suggest that the next time that they buy strawberries they might also want to buy cream.

Building association or relation-based data mining tools can be achieved simply with different tools. For example, within InfoSphere Warehouse a wizard provides configurations of an information flow that is used in association by examining your database input source, decision basis, and output information. Figure 2shows an example from the sample database.

Information flow that is used in association

Information flow used in association


You can use classification to build up an idea of the type of customer, item, or object by describing multiple attributes to identify a particular class. For example, you can easily classify cars into different types (sedan, 4×4, convertible) by identifying different attributes (number of seats, car shape, driven wheels). Given a new car, you might apply it into a particular class by comparing the attributes with our known definition. You can apply the same principles to customers, for example by classifying them by age and social group.

Additionally, you can use classification as a feeder to, or the result of, other techniques. For example, you can use decision trees to determine a classification. Clustering allows you to use common attributes in different classifications to identify clusters.


By examining one or more attributes or classes, you can group individual pieces of data together to form a structure opinion. At a simple level, clustering is using one or more attributes as your basis for identifying a cluster of correlating results. Clustering is useful to identify different information because it correlates with other examples so you can see where the similarities and ranges agree.

Clustering can work both ways. You can assume that there is a cluster at a certain point and then use our identification criteria to see if you are correct. The graph in Figure 3 shows a good example. In this example, a sample of sales data compares the age of the customer to the size of the sale. It is not unreasonable to expect that people in their twenties (before marriage and kids), fifties, and sixties (when the children have left home), have more disposable income.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s